The Uninhabitable Earth

Source: New York Magazine

Famine, economic collapse, a sun that cooks us: What climate change could wreak — sooner than you think.



Fossils by Heartless Machine
In the jungles of Costa Rica, where humidity routinely tops 90 percent, simply moving around outside when it’s over 105 degrees Fahrenheit would be lethal. And the effect would be fast: Within a few hours, a human body would be cooked to death from both inside and out.

I. ‘Doomsday’

Peering beyond scientific reticence.

It is, I promise, worse than you think. If your anxiety about global warming is dominated by fears of sea-level rise, you are barely scratching the surface of what terrors are possible, even within the lifetime of a teenager today. And yet the swelling seas — and the cities they will drown — have so dominated the picture of global warming, and so overwhelmed our capacity for climate panic, that they have occluded our perception of other threats, many much closer at hand. Rising oceans are bad, in fact very bad; but fleeing the coastline will not be enough.

Indeed, absent a significant adjustment to how billions of humans conduct their lives, parts of the Earth will likely become close to uninhabitable, and other parts horrifically inhospitable, as soon as the end of this century.

Even when we train our eyes on climate change, we are unable to comprehend its scope. This past winter, a string of days 60 and 70 degrees warmer than normal baked the North Pole, melting the permafrost that encased Norway’s Svalbard seed vault — a global food bank nicknamed “Doomsday,” designed to ensure that our agriculture survives any catastrophe, and which appeared to have been flooded by climate change less than ten years after being built.

The Doomsday vault is fine, for now: The structure has been secured and the seeds are safe. But treating the episode as a parable of impending flooding missed the more important news. Until recently, permafrost was not a major concern of climate scientists, because, as the name suggests, it was soil that stayed permanently frozen. But Arctic permafrost contains 1.8 trillion tons of carbon, more than twice as much as is currently suspended in the Earth’s atmosphere. When it thaws and is released, that carbon may evaporate as methane, which is 34 times as powerful a greenhouse-gas warming blanket as carbon dioxide when judged on the timescale of a century; when judged on the timescale of two decades, it is 86 times as powerful. In other words, we have, trapped in Arctic permafrost, twice as much carbon as is currently wrecking the atmosphere of the planet, all of it scheduled to be released at a date that keeps getting moved up, partially in the form of a gas that multiplies its warming power 86 times over.

Maybe you know that already — there are alarming stories every day, like last month’s satellite data showing the globe warming, since 1998, more than twice as fast as scientists had thought. Or the news from Antarctica this past May, when a crack in an ice shelf grew 11 miles in six days, then kept going; the break now has just three miles to go — by the time you read this, it may already have met the open water, where it will drop into the sea one of the biggest icebergs ever, a process known poetically as “calving.”

But no matter how well-informed you are, you are surely not alarmed enough. Over the past decades, our culture has gone apocalyptic with zombie movies and Mad Max dystopias, perhaps the collective result of displaced climate anxiety, and yet when it comes to contemplating real-world warming dangers, we suffer from an incredible failure of imagination. The reasons for that are many: the timid language of scientific probabilities, which the climatologist James Hansen once called “scientific reticence” in a paper chastising scientists for editing their own observations so conscientiously that they failed to communicate how dire the threat really was; the fact that the country is dominated by a group of technocrats who believe any problem can be solved and an opposing culture that doesn’t even see warming as a problem worth addressing; the way that climate denialism has made scientists even more cautious in offering speculative warnings; the simple speed of change and, also, its slowness, such that we are only seeing effects now of warming from decades past; our uncertainty about uncertainty, which the climate writer Naomi Oreskes in particular has suggested stops us from preparing as though anything worse than a median outcome were even possible; the way we assume climate change will hit hardest elsewhere, not everywhere; the smallness (two degrees) and largeness (1.8 trillion tons) and abstractness (400 parts per million) of the numbers; the discomfort of considering a problem that is very difficult, if not impossible, to solve; the altogether incomprehensible scale of that problem, which amounts to the prospect of our own annihilation; simple fear. But aversion arising from fear is a form of denial, too.

In between scientific reticence and science fiction is science itself. This article is the result of dozens of interviews and exchanges with climatologists and researchers in related fields and reflects hundreds of scientific papers on the subject of climate change. What follows is not a series of predictions of what will happen — that will be determined in large part by the much-less-certain science of human response. Instead, it is a portrait of our best understanding of where the planet is heading absent aggressive action. It is unlikely that all of these warming scenarios will be fully realized, largely because the devastation along the way will shake our complacency. But those scenarios, and not the present climate, are the baseline. In fact, they are our schedule.

The present tense of climate change — the destruction we’ve already baked into our future — is horrifying enough. Most people talk as if Miami and Bangladesh still have a chance of surviving; most of the scientists I spoke with assume we’ll lose them within the century, even if we stop burning fossil fuel in the next decade. Two degrees of warming used to be considered the threshold of catastrophe: tens of millions of climate refugees unleashed upon an unprepared world. Now two degrees is our goal, per the Paris climate accords, and experts give us only slim odds of hitting it. The U.N. Intergovernmental Panel on Climate Change issues serial reports, often called the “gold standard” of climate research; the most recent one projects us to hit four degrees of warming by the beginning of the next century, should we stay the present course. But that’s just a median projection. The upper end of the probability curve runs as high as eight degrees — and the authors still haven’t figured out how to deal with that permafrost melt. The IPCC reports also don’t fully account for the albedo effect (less ice means less reflected and more absorbed sunlight, hence more warming); more cloud cover (which traps heat); or the dieback of forests and other flora (which extract carbon from the atmosphere). Each of these promises to accelerate warming, and the geological record shows that temperature can shift as much as ten degrees or more in a single decade. The last time the planet was even four degrees warmer, Peter Brannen points out in The Ends of the World, his new history of the planet’s major extinction events, the oceans were hundreds of feet higher.*

The Earth has experienced five mass extinctions before the one we are living through now, each so complete a slate-wiping of the evolutionary record it functioned as a resetting of the planetary clock, and many climate scientists will tell you they are the best analog for the ecological future we are diving headlong into. Unless you are a teenager, you probably read in your high-school textbooks that these extinctions were the result of asteroids. In fact, all but the one that killed the dinosaurs were caused by climate change produced by greenhouse gas. The most notorious was 252 million years ago; it began when carbon warmed the planet by five degrees, accelerated when that warming triggered the release of methane in the Arctic, and ended with 97 percent of all life on Earth dead. We are currently adding carbon to the atmosphere at a considerably faster rate; by most estimates, at least ten times faster. The rate is accelerating. This is what Stephen Hawking had in mind when he said, this spring, that the species needs to colonize other planets in the next century to survive, and what drove Elon Musk, last month, to unveil his plans to build a Mars habitat in 40 to 100 years. These are nonspecialists, of course, and probably as inclined to irrational panic as you or I. But the many sober-minded scientists I interviewed over the past several months — the most credentialed and tenured in the field, few of them inclined to alarmism and many advisers to the IPCC who nevertheless criticize its conservatism — have quietly reached an apocalyptic conclusion, too: No plausible program of emissions reductions alone can prevent climate disaster.

Over the past few decades, the term “Anthropocene” has climbed out of academic discourse and into the popular imagination — a name given to the geologic era we live in now, and a way to signal that it is a new era, defined on the wall chart of deep history by human intervention. One problem with the term is that it implies a conquest of nature (and even echoes the biblical “dominion”). And however sanguine you might be about the proposition that we have already ravaged the natural world, which we surely have, it is another thing entirely to consider the possibility that we have only provoked it, engineering first in ignorance and then in denial a climate system that will now go to war with us for many centuries, perhaps until it destroys us. That is what Wallace Smith Broecker, the avuncular oceanographer who coined the term “global warming,” means when he calls the planet an “angry beast.” You could also go with “war machine.” Each day we arm it more.


II. Heat Death

The bahraining of New York.

In the sugar­cane region of El Salvador, as much as one-fifth of the population has chronic kidney disease, the presumed result of dehydration from working the fields they were able to comfortably harvest as recently as two decades ago. Photo: Heartless Machine

Humans, like all mammals, are heat engines; surviving means having to continually cool off, like panting dogs. For that, the temperature needs to be low enough for the air to act as a kind of refrigerant, drawing heat off the skin so the engine can keep pumping. At seven degrees of warming, that would become impossible for large portions of the planet’s equatorial band, and especially the tropics, where humidity adds to the problem; in the jungles of Costa Rica, for instance, where humidity routinely tops 90 percent, simply moving around outside when it’s over 105 degrees Fahrenheit would be lethal. And the effect would be fast: Within a few hours, a human body would be cooked to death from both inside and out.

Climate-change skeptics point out that the planet has warmed and cooled many times before, but the climate window that has allowed for human life is very narrow, even by the standards of planetary history. At 11 or 12 degrees of warming, more than half the world’s population, as distributed today, would die of direct heat. Things almost certainly won’t get that hot this century, though models of unabated emissions do bring us that far eventually. This century, and especially in the tropics, the pain points will pinch much more quickly even than an increase of seven degrees. The key factor is something called wet-bulb temperature, which is a term of measurement as home-laboratory-kit as it sounds: the heat registered on a thermometer wrapped in a damp sock as it’s swung around in the air (since the moisture evaporates from a sock more quickly in dry air, this single number reflects both heat and humidity). At present, most regions reach a wet-bulb maximum of 26 or 27 degrees Celsius; the true red line for habitability is 35 degrees. What is called heat stress comes much sooner.

Actually, we’re about there already. Since 1980, the planet has experienced a 50-fold increase in the number of places experiencing dangerous or extreme heat; a bigger increase is to come. The five warmest summers in Europe since 1500 have all occurred since 2002, and soon, the IPCC warns, simply being outdoors that time of year will be unhealthy for much of the globe. Even if we meet the Paris goals of two degrees warming, cities like Karachi and Kolkata will become close to uninhabitable, annually encountering deadly heat waves like those that crippled them in 2015. At four degrees, the deadly European heat wave of 2003, which killed as many as 2,000 people a day, will be a normal summer. At six, according to an assessment focused only on effects within the U.S. from the National Oceanic and Atmospheric Administration, summer labor of any kind would become impossible in the lower Mississippi Valley, and everybody in the country east of the Rockies would be under more heat stress than anyone, anywhere, in the world today. As Joseph Romm has put it in his authoritative primer Climate Change: What Everyone Needs to Know, heat stress in New York City would exceed that of present-day Bahrain, one of the planet’s hottest spots, and the temperature in Bahrain “would induce hyperthermia in even sleeping humans.” The high-end IPCC estimate, remember, is two degrees warmer still. By the end of the century, the World Bank has estimated, the coolest months in tropical South America, Africa, and the Pacific are likely to be warmer than the warmest months at the end of the 20th century. Air-conditioning can help but will ultimately only add to the carbon problem; plus, the climate-controlled malls of the Arab emirates aside, it is not remotely plausible to wholesale air-condition all the hottest parts of the world, many of them also the poorest. And indeed, the crisis will be most dramatic across the Middle East and Persian Gulf, where in 2015 the heat index registered temperatures as high as 163 degrees Fahrenheit. As soon as several decades from now, the hajj will become physically impossible for the 2 million Muslims who make the pilgrimage each year.

It is not just the hajj, and it is not just Mecca; heat is already killing us. In the sugarcane region of El Salvador, as much as one-fifth of the population has chronic kidney disease, including over a quarter of the men, the presumed result of dehydration from working the fields they were able to comfortably harvest as recently as two decades ago. With dialysis, which is expensive, those with kidney failure can expect to live five years; without it, life expectancy is in the weeks. Of course, heat stress promises to pummel us in places other than our kidneys, too. As I type that sentence, in the California desert in mid-June, it is 121 degrees outside my door. It is not a record high.


III. The End of Food

Praying for cornfields in the tundra.

Climates differ and plants vary, but the basic rule for staple cereal crops grown at optimal temperature is that for every degree of warming, yields decline by 10 percent. Some estimates run as high as 15 or even 17 percent. Which means that if the planet is five degrees warmer at the end of the century, we may have as many as 50 percent more people to feed and 50 percent less grain to give them. And proteins are worse: It takes 16 calories of grain to produce just a single calorie of hamburger meat, butchered from a cow that spent its life polluting the climate with methane farts.

Pollyannaish plant physiologists will point out that the cereal-crop math applies only to those regions already at peak growing temperature, and they are right theoretically, a warmer climate will make it easier to grow corn in Greenland. But as the pathbreaking work by Rosamond Naylor and David Battisti has shown, the tropics are already too hot to efficiently grow grain, and those places where grain is produced today are already at optimal growing temperature — which means even a small warming will push them down the slope of declining productivity. And you can’t easily move croplands north a few hundred miles, because yields in places like remote Canada and Russia are limited by the quality of soil there; it takes many centuries for the planet to produce optimally fertile dirt.

Drought might be an even bigger problem than heat, with some of the world’s most arable land turning quickly to desert. Precipitation is notoriously hard to model, yet predictions for later this century are basically unanimous: unprecedented droughts nearly everywhere food is today produced. By 2080, without dramatic reductions in emissions, southern Europe will be in permanent extreme drought, much worse than the American dust bowl ever was. The same will be true in Iraq and Syria and much of the rest of the Middle East; some of the most densely populated parts of Australia, Africa, and South America; and the breadbasket regions of China. None of these places, which today supply much of the world’s food, will be reliable sources of any. As for the original dust bowl: The droughts in the American plains and Southwest would not just be worse than in the 1930s, a 2015 NASA study predicted, but worse than any droughts in a thousand years — and that includes those that struck between 1100 and 1300, which “dried up all the rivers East of the Sierra Nevada mountains” and may have been responsible for the death of the Anasazi civilization.

Remember, we do not live in a world without hunger as it is. Far from it: Most estimates put the number of undernourished at 800 million globally. In case you haven’t heard, this spring has already brought an unprecedented quadruple famine to Africa and the Middle East; the U.N. has warned that separate starvation events in Somalia, South Sudan, Nigeria, and Yemen could kill 20 million this year alone.


IV. Climate Plagues

What happens when the bubonic ice melts?

Rock, in the right spot, is a record of planetary history, eras as long as millions of years flattened by the forces of geological time into strata with amplitudes of just inches, or just an inch, or even less. Ice works that way, too, as a climate ledger, but it is also frozen history, some of which can be reanimated when unfrozen. There are now, trapped in Arctic ice, diseases that have not circulated in the air for millions of years — in some cases, since before humans were around to encounter them. Which means our immune systems would have no idea how to fight back when those prehistoric plagues emerge from the ice.

The Arctic also stores terrifying bugs from more recent times. In Alaska, already, researchers have discovered remnants of the 1918 flu that infected as many as 500 million and killed as many as 100 million — about 5 percent of the world’s population and almost six times as many as had died in the world war for which the pandemic served as a kind of gruesome capstone. As the BBC reported in May, scientists suspect smallpox and the bubonic plague are trapped in Siberian ice, too — an abridged history of devastating human sickness, left out like egg salad in the Arctic sun.

Experts caution that many of these organisms won’t actually survive the thaw and point to the fastidious lab conditions under which they have already reanimated several of them — the 32,000-year-old “extremophile” bacteria revived in 2005, an 8 million-year-old bug brought back to life in 2007, the 3.5 million–year–old one a Russian scientist self-injected just out of curiosity — to suggest that those are necessary conditions for the return of such ancient plagues. But already last year, a boy was killed and 20 others infected by anthrax released when retreating permafrost exposed the frozen carcass of a reindeer killed by the bacteria at least 75 years earlier; 2,000 present-day reindeer were infected, too, carrying and spreading the disease beyond the tundra.

What concerns epidemiologists more than ancient diseases are existing scourges relocated, rewired, or even re-evolved by warming. The first effect is geographical. Before the early-modern period, when adventuring sailboats accelerated the mixing of peoples and their bugs, human provinciality was a guard against pandemic. Today, even with globalization and the enormous intermingling of human populations, our ecosystems are mostly stable, and this functions as another limit, but global warming will scramble those ecosystems and help disease trespass those limits as surely as Cortés did. You don’t worry much about dengue or malaria if you are living in Maine or France. But as the tropics creep northward and mosquitoes migrate with them, you will. You didn’t much worry about Zika a couple of years ago, either.

As it happens, Zika may also be a good model of the second worrying effect — disease mutation. One reason you hadn’t heard about Zika until recently is that it had been trapped in Uganda; another is that it did not, until recently, appear to cause birth defects. Scientists still don’t entirely understand what happened, or what they missed. But there are things we do know for sure about how climate affects some diseases: Malaria, for instance, thrives in hotter regions not just because the mosquitoes that carry it do, too, but because for every degree increase in temperature, the parasite reproduces ten times faster. Which is one reason that the World Bank estimates that by 2050, 5.2 billion people will be reckoning with it.


V. Unbreathable Air

A rolling death smog that suffocates millions.

By the end of the century, the coolest months in tropical South America, Africa, and the Pacific are likely to be warmer than the warmest months at the end of the 20th century. Photo: Heartless Machine

Our lungs need oxygen, but that is only a fraction of what we breathe. The fraction of carbon dioxide is growing: It just crossed 400 parts per million, and high-end estimates extrapolating from current trends suggest it will hit 1,000 ppm by 2100. At that concentration, compared to the air we breathe now, human cognitive ability declines by 21 percent.

Other stuff in the hotter air is even scarier, with small increases in pollution capable of shortening life spans by ten years. The warmer the planet gets, the more ozone forms, and by mid-century, Americans will likely suffer a 70 percent increase in unhealthy ozone smog, the National Center for Atmospheric Research has projected. By 2090, as many as 2 billion people globally will be breathing air above the WHO “safe” level; one paper last month showed that, among other effects, a pregnant mother’s exposure to ozone raises the child’s risk of autism (as much as tenfold, combined with other environmental factors). Which does make you think again about the autism epidemic in West Hollywood.

Already, more than 10,000 people die each day from the small particles emitted from fossil-fuel burning; each year, 339,000 people die from wildfire smoke, in part because climate change has extended forest-fire season (in the U.S., it’s increased by 78 days since 1970). By 2050, according to the U.S. Forest Service, wildfires will be twice as destructive as they are today; in some places, the area burned could grow fivefold. What worries people even more is the effect that would have on emissions, especially when the fires ravage forests arising out of peat. Peatland fires in Indonesia in 1997, for instance, added to the global CO2 release by up to 40 percent, and more burning only means more warming only means more burning. There is also the terrifying possibility that rain forests like the Amazon, which in 2010 suffered its second “hundred-year drought” in the space of five years, could dry out enough to become vulnerable to these kinds of devastating, rolling forest fires — which would not only expel enormous amounts of carbon into the atmosphere but also shrink the size of the forest. That is especially bad because the Amazon alone provides 20 percent of our oxygen.

Then there are the more familiar forms of pollution. In 2013, melting Arctic ice remodeled Asian weather patterns, depriving industrial China of the natural ventilation systems it had come to depend on, which blanketed much of the country’s north in an unbreathable smog. Literally unbreathable. A metric called the Air Quality Index categorizes the risks and tops out at the 301-to-500 range, warning of “serious aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly” and, for all others, “serious risk of respiratory effects”; at that level, “everyone should avoid all outdoor exertion.” The Chinese “airpocalypse” of 2013 peaked at what would have been an Air Quality Index of over 800. That year, smog was responsible for a third of all deaths in the country.


VI. Perpetual War

The violence baked into heat.

Climatologists are very careful when talking about Syria. They want you to know that while climate change did produce a drought that contributed to civil war, it is not exactly fair to saythat the conflict is the result of warming; next door, for instance, Lebanon suffered the same crop failures. But researchers like Marshall Burke and Solomon Hsiang have managed to quantify some of the non-obvious relationships between temperature and violence: For every half-degree of warming, they say, societies will see between a 10 and 20 percent increase in the likelihood of armed conflict. In climate science, nothing is simple, but the arithmetic is harrowing: A planet five degrees warmer would have at least half again as many wars as we do today. Overall, social conflict could more than double this century.

This is one reason that, as nearly every climate scientist I spoke to pointed out, the U.S. military is obsessed with climate change: The drowning of all American Navy bases by sea-level rise is trouble enough, but being the world’s policeman is quite a bit harder when the crime rate doubles. Of course, it’s not just Syria where climate has contributed to conflict. Some speculate that the elevated level of strife across the Middle East over the past generation reflects the pressures of global warming — a hypothesis all the more cruel considering that warming began accelerating when the industrialized world extracted and then burned the region’s oil.

What accounts for the relationship between climate and conflict? Some of it comes down to agriculture and economics; a lot has to do with forced migration, already at a record high, with at least 65 million displaced people wandering the planet right now. But there is also the simple fact of individual irritability. Heat increases municipal crime rates, and swearing on social media, and the likelihood that a major-league pitcher, coming to the mound after his teammate has been hit by a pitch, will hit an opposing batter in retaliation. And the arrival of air-conditioning in the developed world, in the middle of the past century, did little to solve the problem of the summer crime wave.


VII. Permanent Economic Collapse

Dismal capitalism in a half-poorer world.

The murmuring mantra of global neoliberalism, which prevailed between the end of the Cold War and the onset of the Great Recession, is that economic growth would save us from anything and everything.
But in the aftermath of the 2008 crash, a growing number of historians studying what they call “fossil capitalism” have begun to suggest that the entire history of swift economic growth, which began somewhat suddenly in the 18th century, is not the result of innovation or trade or the dynamics of global capitalism but simply our discovery of fossil fuels and all their raw power — a onetime injection of new “value” into a system that had previously been characterized by global subsistence living. Before fossil fuels, nobody lived better than their parents or grandparents or ancestors from 500 years before, except in the immediate aftermath of a great plague like the Black Death, which allowed the lucky survivors to gobble up the resources liberated by mass graves. After we’ve burned all the fossil fuels, these scholars suggest, perhaps we will return to a “steady state” global economy. Of course, that onetime injection has a devastating long-term cost: climate change.

The most exciting research on the economics of warming has also come from Hsiang and his colleagues, who are not historians of fossil capitalism but who offer some very bleak analysis of their own: Every degree Celsius of warming costs, on average, 1.2 percent of GDP (an enormous number, considering we count growth in the low single digits as “strong”). This is the sterling work in the field, and their median projection is for a 23 percent loss in per capita earning globally by the end of this century (resulting from changes in agriculture, crime, storms, energy, mortality, and labor).
Tracing the shape of the probability curve is even scarier: There is a 12 percent chance that climate change will reduce global output by more than 50 percent by 2100, they say, and a 51 percent chance that it lowers per capita GDP by 20 percent or more by then, unless emissions decline. By comparison, the Great Recession lowered global GDP by about 6 percent, in a onetime shock; Hsiang and his colleagues estimate a one-in-eight chance of an ongoing and irreversible effect by the end of the century that is eight times worse.

The scale of that economic devastation is hard to comprehend, but you can start by imagining what the world would look like today with an economy half as big, which would produce only half as much value, generating only half as much to offer the workers of the world. It makes the grounding of flights out of heat-stricken Phoenix last month seem like pathetically small economic potatoes. And, among other things, it makes the idea of postponing government action on reducing emissions and relying solely on growth and technology to solve the problem an absurd business calculation.
Every round-trip ticket on flights from New York to London, keep in mind, costs the Arctic three more square meters of ice.


VIII. Poisoned Oceans

Sulfide burps off the skeleton coast.

That the sea will become a killer is a given. Barring a radical reduction of emissions, we will see at least four feet of sea-level rise and possibly ten by the end of the century. A third of the world’s major cities are on the coast, not to mention its power plants, ports, navy bases, farmlands, fisheries, river deltas, marshlands, and rice-paddy empires, and even those above ten feet will flood much more easily, and much more regularly, if the water gets that high. At least 600 million people live within ten meters of sea level today.

But the drowning of those homelands is just the start. At present, more than a third of the world’s carbon is sucked up by the oceans — thank God, or else we’d have that much more warming already. But the result is what’s called “ocean acidification,” which, on its own, may add a half a degree to warming this century. It is also already burning through the planet’s water basins — you may remember these as the place where life arose in the first place. You have probably heard of “coral bleaching” — that is, coral dying — which is very bad news, because reefs support as much as a quarter of all marine life and supply food for half a billion people. Ocean acidification will fry fish populations directly, too, though scientists aren’t yet sure how to predict the effects on the stuff we haul out of the ocean to eat; they do know that in acid waters, oysters and mussels will struggle to grow their shells, and that when the pH of human blood drops as much as the oceans’ pH has over the past generation, it induces seizures, comas, and sudden death.

That isn’t all that ocean acidification can do. Carbon absorption can initiate a feedback loop in which underoxygenated waters breed different kinds of microbes that turn the water still more “anoxic,” first in deep ocean “dead zones,” then gradually up toward the surface. There, the small fish die out, unable to breathe, which means oxygen-eating bacteria thrive, and the feedback loop doubles back. This process, in which dead zones grow like cancers, choking off marine life and wiping out fisheries, is already quite advanced in parts of the Gulf of Mexico and just off Namibia, where hydrogen sulfide is bubbling out of the sea along a thousand-mile stretch of land known as the “Skeleton Coast.” The name originally referred to the detritus of the whaling industry, but today it’s more apt than ever. Hydrogen sulfide is so toxic that evolution has trained us to recognize the tiniest, safest traces of it, which is why our noses are so exquisitely skilled at registering flatulence. Hydrogen sulfide is also the thing that finally did us in that time 97 percent of all life on Earth died, once all the feedback loops had been triggered and the circulating jet streams of a warmed ocean ground to a halt — it’s the planet’s preferred gas for a natural holocaust. Gradually, the ocean’s dead zones spread, killing off marine species that had dominated the oceans for hundreds of millions of years, and the gas the inert waters gave off into the atmosphere poisoned everything on land. Plants, too. It was millions of years before the oceans recovered.


IX. The Great Filter

Our present eeriness cannot last.

So why can’t we see it? In his recent book-length essay The Great Derangement, the Indian novelist Amitav Ghosh wonders why global warming and natural disaster haven’t become major subjects of contemporary fiction — why we don’t seem able to imagine climate catastrophe, and why we haven’t yet had a spate of novels in the genre he basically imagines into half-existence and names “the environmental uncanny.” “Consider, for example, the stories that congeal around questions like, ‘Where were you when the Berlin Wall fell?’ or ‘Where were you on 9/11?’ ” he writes. “Will it ever be possible to ask, in the same vein, ‘Where were you at 400 ppm?’ or ‘Where were you when the Larsen B ice shelf broke up?’ ” His answer: Probably not, because the dilemmas and dramas of climate change are simply incompatible with the kinds of stories we tell ourselves about ourselves, especially in novels, which tend to emphasize the journey of an individual conscience rather than the poisonous miasma of social fate.

Surely this blindness will not last — the world we are about to inhabit will not permit it. In a six-degree-warmer world, the Earth’s ecosystem will boil with so many natural disasters that we will just start calling them “weather”: a constant swarm of out-of-control typhoons and tornadoes and floods and droughts, the planet assaulted regularly with climate events that not so long ago destroyed whole civilizations. The strongest hurricanes will come more often, and we’ll have to invent new categories with which to describe them; tornadoes will grow longer and wider and strike much more frequently, and hail rocks will quadruple in size. Humans used to watch the weather to prophesy the future; going forward, we will see in its wrath the vengeance of the past. Early naturalists talked often about “deep time” — the perception they had, contemplating the grandeur of this valley or that rock basin, of the profound slowness of nature. What lies in store for us is more like what the Victorian anthropologists identified as “dreamtime,” or “everywhen”: the semi-mythical experience, described by Aboriginal Australians, of encountering, in the present moment, an out-of-time past, when ancestors, heroes, and demigods crowded an epic stage. You can find it already watching footage of an iceberg collapsing into the sea — a feeling of history happening all at once.

It is. Many people perceive climate change as a sort of moral and economic debt, accumulated since the beginning of the Industrial Revolution and now come due after several centuries — a helpful perspective, in a way, since it is the carbon-burning processes that began in 18th-century England that lit the fuse of everything that followed. But more than half of the carbon humanity has exhaled into the atmosphere in its entire history has been emitted in just the past three decades; since the end of World War II, the figure is 85 percent. Which means that, in the length of a single generation, global warming has brought us to the brink of planetary catastrophe, and that the story of the industrial world’s kamikaze mission is also the story of a single lifetime. My father’s, for instance: born in 1938, among his first memories the news of Pearl Harbor and the mythic Air Force of the propaganda films that followed, films that doubled as advertisements for imperial-American industrial might; and among his last memories the coverage of the desperate signing of the Paris climate accords on cable news, ten weeks before he died of lung cancer last July. Or my mother’s: born in 1945, to German Jews fleeing the smokestacks through which their relatives were incinerated, now enjoying her 72nd year in an American commodity paradise, a paradise supported by the supply chains of an industrialized developing world. She has been smoking for 57 of those years, unfiltered.

Or the scientists’. Some of the men who first identified a changing climate (and given the generation, those who became famous were men) are still alive; a few are even still working. Wally Broecker is 84 years old and drives to work at the Lamont-Doherty observatory across the Hudson every day from the Upper West Side. Like most of those who first raised the alarm, he believes that no amount of emissions reduction alone can meaningfully help avoid disaster. Instead, he puts his faith in carbon capture — untested technology to extract carbon dioxide from the atmosphere, which Broecker estimates will cost at least several trillion dollars — and various forms of “geoengineering,” the catchall name for a variety of moon-shot technologies far-fetched enough that many climate scientists prefer to regard them as dreams, or nightmares, from science fiction. He is especially focused on what’s called the aerosol approach — dispersing so much sulfur dioxide into the atmosphere that when it converts to sulfuric acid, it will cloud a fifth of the horizon and reflect back 2 percent of the sun’s rays, buying the planet at least a little wiggle room, heat-wise. “Of course, that would make our sunsets very red, would bleach the sky, would make more acid rain,” he says. “But you have to look at the magnitude of the problem. You got to watch that you don’t say the giant problem shouldn’t be solved because the solution causes some smaller problems.” He won’t be around to see that, he told me. “But in your lifetime …”

Jim Hansen is another member of this godfather generation. Born in 1941, he became a climatologist at the University of Iowa, developed the groundbreaking “Zero Model” for projecting climate change, and later became the head of climate research at NASA, only to leave under pressure when, while still a federal employee, he filed a lawsuit against the federal government charging inaction on warming (along the way he got arrested a few times for protesting, too). The lawsuit, which is brought by a collective called Our Children’s Trust and is often described as “kids versus climate change,” is built on an appeal to the equal-protection clause, namely, that in failing to take action on warming, the government is violating it by imposing massive costs on future generations; it is scheduled to be heard this winter in Oregon district court. Hansen has recently given up on solving the climate problem with a carbon tax, which had been his preferred approach, and has set about calculating the total cost of extracting carbon from the atmosphere instead.

Hansen began his career studying Venus, which was once a very Earth-like planet with plenty of life-supporting water before runaway climate change rapidly transformed it into an arid and uninhabitable sphere enveloped in an unbreathable gas; he switched to studying our planet by 30, wondering why he should be squinting across the solar system to explore rapid environmental change when he could see it all around him on the planet he was standing on. “When we wrote our first paper on this, in 1981,” he told me, “I remember saying to one of my co-authors, ‘This is going to be very interesting. Sometime during our careers, we’re going to see these things beginning to happen.’ ”

Several of the scientists I spoke with proposed global warming as the solution to Fermi’s famous paradox, which asks, If the universe is so big, then why haven’t we encountered any other intelligent life in it? The answer, they suggested, is that the natural life span of a civilization may be only several thousand years, and the life span of an industrial civilization perhaps only several hundred. In a universe that is many billions of years old, with star systems separated as much by time as by space, civilizations might emerge and develop and burn themselves up simply too fast to ever find one another. Peter Ward, a charismatic paleontologist among those responsible for discovering that the planet’s mass extinctions were caused by greenhouse gas, calls this the “Great Filter”: “Civilizations rise, but there’s an environmental filter that causes them to die off again and disappear fairly quickly,” he told me. “If you look at planet Earth, the filtering we’ve had in the past has been in these mass extinctions.” The mass extinction we are now living through has only just begun; so much more dying is coming.

And yet, improbably, Ward is an optimist. So are Broecker and Hansen and many of the other scientists I spoke to. We have not developed much of a religion of meaning around climate change that might comfort us, or give us purpose, in the face of possible annihilation. But climate scientists have a strange kind of faith: We will find a way to forestall radical warming, they say, because we must.

It is not easy to know how much to be reassured by that bleak certainty, and how much to wonder whether it is another form of delusion; for global warming to work as parable, of course, someone needs to survive to tell the story. The scientists know that to even meet the Paris goals, by 2050, carbon emissions from energy and industry, which are still rising, will have to fall by half each decade; emissions from land use (deforestation, cow farts, etc.) will have to zero out; and we will need to have invented technologies to extract, annually, twice as much carbon from the atmosphere as the entire planet’s plants now do. Nevertheless, by and large, the scientists have an enormous confidence in the ingenuity of humans — a confidence perhaps bolstered by their appreciation for climate change, which is, after all, a human invention, too. They point to the Apollo project, the hole in the ozone we patched in the 1980s, the passing of the fear of mutually assured destruction. Now we’ve found a way to engineer our own doomsday, and surely we will find a way to engineer our way out of it, one way or another. The planet is not used to being provoked like this, and climate systems designed to give feedback over centuries or millennia prevent us — even those who may be watching closely — from fully imagining the damage done already to the planet. But when we do truly see the world we’ve made, they say, we will also find a way to make it livable. For them, the alternative is simply unimaginable.

*This article appears in the July 10, 2017, issue of New York Magazine.

*This article has been updated to clarify a reference to Peter Brannen’s The Ends of the World.

Sea Levels Will Rise Faster Than Ever



Scientific research indicates sea levels worldwide have been rising at a rate of 0.14 inches (3.5 millimeters) per year since the early 1990s. The trend, linked to global warming, puts thousands of coastal cities, like Venice, Italy, (seen here during a historic flood in 2008), and even whole islands at risk of being claimed by the ocean. Photograph by Andrea Pattero/AFP/Getty Images (National Geographic)

By Scott Waldman, ClimateWire on November 8, 2016

Source: Scientific American The Atlantic coast will be one of the hardest hit regions

Sea levels across the globe will rise faster than at any time throughout human history if the Earth’s warming continues beyond 2 degrees Celsius.

The Atlantic coast of North America will be one of the worst-hit areas as melting glaciers cause the sea level to rise over the next century, a new study published yesterday in the Proceedings of the National Academy of Sciences finds.

However, that rise is not expected to be uniform, as gravity and the movement of the ocean will play a role in how the water is distributed, and some areas will be hit worse than others. New York and other cities along the East Coast could see seas rise by more than 3 feet by the end of the century if the Earth warms by 4 or 5 degrees beyond pre-industrial levels.

If the rate of carbon emissions continues unabated, the authors said, the globe would warm by 2 degrees and cause significant sea-level rise by 2040. It would be worse along the East Coast of North America and Norway, which are expected to experience a sea-level rise of about a foot. The relative speed of the sea’s rise means many areas won’t have time to adapt, researchers found. And from there, warming would accelerate even faster.

“The coastal communities of rapidly expanding cities in the developing world and vulnerable tropical coastal ecosystems will have a very limited time to adapt to sea-level rises after the ‘2 degrees Celsius’ threshold is likely to be reached,” said Svetlana Jevrejeva, a researcher at the National Oceanography Centre in Liverpool, England, and lead author of the study.

The sea-level rise comes as the Earth’s record-breaking warmth is expected to become the “new normal,” according to another study published this week in the Bulletin of the American Meteorological Society. While 2015 was the hottest year on record, it could be the average within the next decade if carbon emissions continue to rise at their current rate, it found. And even if countries take action to limit carbon dioxide, humanity may have already locked in the increased warmth by 2040.

But limiting emissions now will mean some of the regions of the globe are not locked in for the new levels of warmth, and that they can still have significant variability.

“It gives us hope to know that if we act quickly to reduce greenhouse gases, seasonal extremes might never enter a new normal state in the 21st century at regional levels for the Southern Hemisphere summer and Northern Hemisphere winter,” said Sophie Lewis, a researcher at the Australian National University.

Millions of urban dwellers at risk

Nations that signed the Paris Agreement limiting warming to a maximum of 2 degrees are meeting this week in Morocco to put the accord into motion. Meanwhile, the United Nations has already cautioned that the emission targets countries voluntarily set may not be strict enough to meet the 2-degree goal.

Two degrees of warming is expected to cause an average global sea-level rise of 8 inches, but virtually all coastal areas will see more of a rise, Jevrejeva found. If warming exceeds 2 degrees by 2100, as some climate scientists worry it might, about 80 percent of the global coastline could experience a rise in sea levels of 6 feet. Such a rapid rise in sea levels is unprecedented since the dawn of the Bronze Age about 5,000 years ago, according to the study.

The research takes further the potential for sea-level rise posed by the Intergovernmental Panel on Climate Change, which argued that sea-level rise of 11 to 38 inches is possible by 2100. Many climate scientists have since claimed that estimate is too conservative.

Absent a concerted effort to limit warming, cities and island nations across the globe are at risk, researchers found.

“Coastal communities, notably rapidly expanding cities in the developing world; small island states; United Nations Educational, Scientific and Cultural Organization Cultural World Heritage sites; and vulnerable tropical coastal ecosystems will have a very limited time after mid-century to adapt to these rises,” they wrote.

The rise for New York is predicated on a warming of 5 degrees by 2100, which some researchers have contested may be too high. But at the upper scale of that level of warming, tens of millions of people around the world would be displaced. That includes “2.5 million living in low-lying areas of Miami; 2.1 million in Guangzhou [in China]; 1.8 million in Mumbai; and more than 1 million each in Osaka [in Japan], Tokyo, New Orleans, New York, and [Vietnam’s] Ho Chi Minh City,” researchers contended.

The study is part of a growing body of research that looks for possible scenarios that involve the potential for catastrophic sea-level rise, but more attention should be paid to the loss of land ice, as well, said Tad Pfeffer, a glaciologist at the University of Colorado, Boulder. While researchers typically focus on the loss of glaciers in Antarctica and Greenland, the loss of land ice in other spots across the globe is now contributing to sea-level rise at almost the same rate as the Arctic’s melting ice, he said. It’s the full scope of the current glacial loss that concerns political leaders and policymakers because it has already presented a pressing need to be addressed, he said.

“This near-term time scale is the time of greatest concern to decision makers,” he said. “Research that reaches out to 2100 and beyond is scientifically exciting, but really of secondary importance to the people who are trying to make sense of the science for decision-making.”

Reprinted from ClimateWire with permission from E&E News. E&E provides daily coverage of essential energy and environmental news at

Noam Chomsky and the Bicycle Theory

Prof. Noam Chomsky Credit Virginie Montet/Agence France-Presse — Getty Images

At 87, Noam Chomsky, the founder of modern linguistics, remains a vital presence in American intellectual life. An emeritus professor at the Massachusetts Institute of Technology, where he still teaches, he has a dual identity, reflected in his several dozen books. Many are on theoretical linguistics and the philosophy of mind. Others are sharp, leftish polemics on American politics. Dr. Chomsky is back in the news, thanks to a pair of high-profile attacks. In “The Kingdom of Speech,” Tom Wolfe pairs Dr. Chomsky (“Noam Charisma”) with Darwin as the malign Ur-theorists of evolution. In “Decoding Chomsky: Science and Revolutionary Politics,” the British anthropologist Chris Knight explores “the Chomsky problem” — the paradox of a thinker who belongs to the “professional and scientific elite” even as he espouses populist political ideas.

It will soon be 60 years since your first book, “Syntactic Structures,” was published. Where was the study of linguistics then and what did you see that could be done?

The belief at the time was that languages can vary arbitrarily, so when you study a new language you should come to it without any preconceptions. Such views are still held, although the evidence to undermine them, I think, is simply overwhelming. Studies have shown that the diversity and complexity is superficial, while the internal system, which yields the fundamental properties of language as a system of thought, may be close to uniform among humans — basically following very simple genetically determined properties and general laws, like principles of computation. Some of the most exciting work in the field is going in that direction.

Are you as convinced now as when you were younger that understanding language is essential to understanding the human mind?

I think that’s clearer and clearer. The emergence of language as a system of creative thought was sensed by Descartes and Galileo. But it was not really addressed till the mid-20th century because the tools weren’t available to formulate it properly. You needed the modern theory of computability, which was developed by Alan Turing and other great mathematicians of the 1930s and ’40s. I was lucky that I was becoming an undergraduate at just the time that all these great insights were emerging.

Have you read Tom Wolfe’s book?

It’s so uninformed and distorted that it hardly rises to the level of meeting a laugh test. In the Harper’s Magazine excerpt, there’s exactly one paragraph that is accurate, quoted from an interview we had in which I explain why his crucial example, the Amazonian language Pirahã, is completely irrelevant to his conclusions and claims because what he says about Pirahã — correct or not — is about the language itself, not about the common human faculty of language. To take an analogy: If some tribe were found in which everyone wears a black patch over one eye, it would have no bearing on the study of binocular vision in the human visual system.

How about Chris Knight? He connects your theory of language to Pentagon-funded work you did at M.I.T. during the Cold War.

The Pentagon was the means by which the government carried out industrial policy and developed the high-tech economy of the future. M.I.T. was almost entirely funded by the military, including the music department. Does this mean we were doing military work? There was a study in 1969, the Pounds commission — I was a member of it — to investigate whether any military or classified work was being done on campus. Answer? None.

Why do you think we’re seeing this resurgence of analysis? You must tire of defending your work.

I’ve been defending the legitimacy of this work, extensively and in print, for 60 years. In earlier years, the discussions were with serious philosophers, linguists, cognitive scientists. I’m sorry to see that the resurgence you mention does not begin to approximate that level — one reason why, unlike earlier years, I don’t bother to respond unless asked.

Let’s talk about your politics.

I supported Bernie Sanders. The most important issue we face, a real question of species survival, is climate change. I’ve been criticized for advocating a politics of fear, which is correct. That’s not a criticism. That’s sanity.

What do you make of the political climate today? Of the student protests?

Humans face critical problems that have never arisen before in their history, problems of survival of organized human life on earth. They are barely mentioned in the current electoral extravaganza and the voluminous commentary about it. Fortunately, young people are often deeply concerned and directly engaged.

You’ll be teaching two classes next semester at the University of Arizona.

Yes. An undergraduate course will focus on the current stage of globalized state capitalism and ways of approaching “the common good” as it has been conceived in various ways since the Enlightenment. The graduate seminar will explore critical topics at the boundaries of current inquiry into the nature of language, its acquisition and use, its evolution. Every class is a challenge and often leads to rethinking and exploration of new directions.

How do you account for your amazing stamina and energy level at age 87?

The bicycle theory. As long as you keep riding, you don’t fall.

Bono of U2 called you the Elvis of academia. Students wait hours to hear your lectures. Then there’s all that Chomsky memorabilia — mugs, T-shirts, even luggage tags.

Seems strange to me. It can only mean that my activist engagements and professional work somehow relate to what many people are looking for and don’t appear to find elsewhere.

Do you own a Chomsky coffee mug?

No. But I get things from friends. The one I like is one my grandchildren like. It’s a little figure of a gnome you can put in a garden. “Gnome Chomsky.”

As Earth Warms, the Diseases That May Lie Within Permafrost Become a Bigger Worry


By Sara Goudarzi, Scientific American – 30 October 16
Source: Reader Supported News


Scientists are witnessing the theoretical turning into reality: infectious microbes emerging from a deep freeze


This past summer anthrax killed a 12-year-old boy in a remote part of Siberia. At least 20 other people, also from the Yamal Peninsula, were diagnosed with the potentially deadly disease after approximately 100 suspected cases were hospitalized. Additionally, more than 2,300 reindeer in the area died from the infection. The likely cause? Thawing permafrost. According to Russian officials, thawed permafrost—a permanently frozen layer of soil—released previously immobile spores of Bacillus anthracis into nearby water and soil and then into the food supply. The outbreak was the region’s first in 75 years.

Researchers have predicted for years that one of the effects of global warming could be that whatever is frozen in permafrost—such as ancient bacteria—might be released as temperatures climb. This could include infectious agents humans might not be prepared for, or have immunity to, the scientists said. Now they are witnessing the theoretical turning into reality: infectious microorganisms emerging from a deep freeze.

Although anthrax occurs naturally in all soil and outbreaks unrelated to permafrost can occur, extensive permafrost thaw could increase the number of people exposed to anthrax bacteria. In a 2011 paper published in Global Health Action, co-authors Boris A. Revich and Marina A. Podolnaya wrote of their predictions: “As a consequence of permafrost melting, the vectors of deadly infections of the 18th and 19th centuries may come back, especially near the cemeteries where the victims of these infections were buried.”

And permafrost is indeed thawing—at higher latitudes and to greater depths than ever before. In various parts of Siberia the active layer above permafrost can thaw to a depth of 50 centimeters every summer. This summer, however, there was a heat wave in the region, and temperatures hovered around 35 degrees Celsius—25 degrees warmer than usual. The difference possibly expanded or deepened the thaw and mobilized microorganisms usually stuck in rigid earth. Although scientists have yet to calculate the final depth, they postulate that it is a number that has not been seen in almost a century. Permafrost thaw overall could become widespread with temperatures only slightly higher than those at present, according to a 2013 study in Science. Heat waves in higher latitudes are becoming more frequent as well.

What thawing permafrost could unleash depends on the heartiness of the infectious agent involved. A lot of microorganisms cannot survive in extreme cold, but some can withstand it for many years. “B. anthracis are special because they are sporulating bacteria,” says Jean-Michel Claverie, head of the Mediterranean Institute of Microbiology and a professor at Aix-Marseille University in France. “Spores are extremely resistant and, like seeds, can survive for longer than a century.”

Viruses could also survive for lengthy periods. In 2014 and 2015 Claverie and his colleague Chantal Abergel published their findings on two still infectious viruses from a chunk of 30,000-year-old Siberian permafrost. Although Pithovirus sibericum and Mollivirus sibericum can infect only amoebas, the discovery is an indication that viruses that infect humans—such as smallpox and the Spanish flu—could potentially be preserved in permafrost.

Human viruses from even further back could also make a showing. For instance, the microorganisms living on and within the early humans who populated the Arctic could still be frozen in the soil. “There are hints that Neandertals and Denisovans could have settled in northern Siberia [and] were plagued by various viral diseases, some of which we know, like smallpox, and some others that might have disappeared,” Claverie says. “The fact that there might be an infection continuity between us and ancient hominins is fascinating—and might be worrying.”

Janet Jansson, who studies permafrost at the Pacific Northwest National Laboratory in Washington State, is not worried about ancient viruses. Several attempts to discover these infectious agents in corpses have come up empty, she notes. She does advocate, however, for further research to identify the wide range of permafrost-dwelling organisms, some of which could pose health risks. To accomplish that goal, she and others are using modern molecular tools—such as DNA sequencing and protein analysis—to categorize the properties of unknown microorganisms, sometimes referred to as microbial dark matter.

The likelihood and frequency of outbreaks similar to the one in Siberia will depend on the speed and trajectory of climate change. For instance, it is possible that another heat wave will expose the carcasses of animals infected by anthrax, Revich says. “The situation on the Yamal Peninsula has shown that the risk of the spread of anthrax is already real,” he adds.

In effect, infectious agents buried in the permafrost are unknowable and unpredictable in their timing and ferocity. Thus, researchers say thawing permafrost is not our biggest worry when it comes to infectious diseases and global warming. The more immediate, and certain, threat to humans is the widening geographical ranges of modern infectious diseases (and their carriers, such as mosquitoes) as the earth warms. “We now have dengue in southern parts of Texas,” says George C. Stewart, McKee Professor of Microbial Pathogenesis and chair of the department of veterinary pathobiology at the University of Missouri. “Malaria is seen at higher elevations and latitudes as temperatures climb. And the cholera agent, Vibrio cholerae, replicates better at higher temperatures.”

Unlike the zombie microbes lurking in the permafrost, modern spreading diseases are more of a known quantity, and there are proved ways to curb them: mapping trends, eliminating mosquito-breeding sites and spraying insecticides. Of course, dramatically lowering fossil-fuel emissions to combat climate change could tackle both threats—the resurgence of ancient and deadly pathogens and the widening ranges of infectious diseases—in one shot.

The Sick Ocean

A major new scientific report, “Explaining Ocean Warming” was released on September 5th. It is grim. According to the International Union for Conservation of Nature (IUCN) World Conservation Congress in Hawaii, the findings are based upon peer-reviewed research compiled by 80 scientists from 12 countries. It is the most comprehensive study ever undertaken on the subject of warming of the ocean.

Significantly, the ocean has absorbed more than 90% of “enhanced heating from climate change since the 1970s.” In other words, the ocean has been “shielding us” from the extensive affects of global warming. And, the consequences for the ocean are “absolutely massive.”

The “seasons in the ocean” are actually changing as a result.

“The scale of ocean warming is truly staggering with the numbers so large that it is difficult for most people to comprehend,” D. Laffoley, et al, ed. Explaining Ocean Warming, IUCN Global Marine and Polar Programme, Sept. 2016.

“A useful analysis undertaken by the Grantham Institute in 2015 concluded that if the same amount of heat that has gone into the top 2000m of the ocean between 1955-2010 had gone into the lower 10km of the atmosphere, then the Earth would have seen a warming of 36°C.”

In other words, humanity would be toast.

Here’s one of many dangerous “hooks” mentioned in the report: “Crucially, as evident in the past two years, the heat and CO2 accumulated in the ocean are not permanently locked away, but can be released back into the atmosphere when the ocean surface is anomalously warm, giving a positive rapid feed-back to global warming,” which would entail a decidedly harsh blow to life on the planet.

The 500-page report is all-inclusive with several subsections dealing with individual oceanic issues. Yet, a general overview of the “chain of impacts” is perhaps most relevant to an understanding of the dire consequences of failure to act by halting CO2 fossil fuel emissions as soon as possible.

The “chain of impacts” clearly demonstrates the linear interrelated behavior of ocean warming, ocean acidification, and sea-level rise. Due to a domino effect of one problem cascading into others, key human sectors are now threatened, e.g. fisheries, aquaculture, coastal risks management, general health, and coast tourism.

In point of fact, scientific studies show rapid deterioration throughout the “change of impacts” statement such that an all-out alarm is necessitated. In short, the ole public clarion bells need to start ringing hard and loud because “the impacts on key marine and coastal organisms, ecosystems and ecosystem services are already detectable from high to low latitudes transcending the traditional North/South divide.”

In other words, the entire world oceanic ecosystem is already showing signs of severe stress or oceanic sickness.

Furthermore, the latency affect of anthropogenic (human-caused) global warming means the impact of today’s carbon emissions shows up years and years down the line such that, assuming carbon emissions drop to zero tomorrow, global warming continues cruising along for many years to come.

All-important, the ocean is a “climate integrator” that regulates the entire planetary biosphere by absorbing 26% of human-caused CO2 and 93% of additional planetary heat. “Without the ocean, present climate change would thus be far more intense and challenging for human life.”

Meanwhile, the regulating function of the ocean comes with heavy costs, for example, ocean acidification and availability of carbonate ions are disrupted, which are building blocks for marine plants and animals to make skeletons, shells, etc.

This acidification impact is already a factor at the base of the food chain, as tiny pea-sized pteropods, which serve as food stock for everything from krill to salmon to whales, show ultra-thinning of their protective shells necessary for both reproduction and maturation, a problem especially found in the Southern Ocean. This early stage risk to disruption of the food chain is caused by excessive carbon dioxide (CO2) absorbed into the ocean emitted by fossil fuels.

Astonishingly, sea level rise, the most noticeable oceanic impact, has already dramatically increased its rate of increase over the 1901-2010 period as the rate of rise from 1993-2010 accelerated by an astounding 88%. This sea level rise is already felt in cities like Miami where streets are being raised and additional pumping systems installed (Miami Beach is Raising Streets by 2 Feet to Combat Rising Seas, miamibeachrealtor displays a photo of newly raised streets).

Assuming business-as-usual anthropogenic climate change, sources of dietary protein and income for tens of millions of people will likely be severely impacted by mass mortalities. Wherefore, the ole clarion bell needs to ring even louder, waking up citizens to the threat of impending serious food shortages. Fisheries and aquaculture, which are both key for survival for millions, are already at high risk.

Meanwhile, and unfortunately, climate change contemporaneously continues to negatively affect land agriculture, which will likely exacerbate food shortages with the ocean simultaneously stressed. In all, ocean warming is synergistic with other human-induced stresses such as over-exploitation, like drift net fishing, and habitat destruction, e.g., bleached coral, and chemical pollution, for example, Ag runoff.

The report has suggested solutions to ocean stress, as for example: (1) mitigating CO2 emissions by getting off fossil fuels is number no. 1 on the hit list, followed by (2) protecting marine and coastal ecosystems by governmental regulation of “protected areas” and (3) repairing damaged ecosystems with, for example, coral farming, and (4) adapting economic diversification zones and activities.

Importantly, the landmark study emphasizes the fact that “unequivocal scientific evidence shows that impacts on key marine and coastal organisms, ecosystems, and services are already detectable and that high to very high risks of impact are to be expected,” Ibid, page 53.

That statement is as straightforward, pulling no punches, as scientific papers ever get. The evidence is crystal clear that climate change is disrupting the ocean, which is the only ocean we’ve got.

There are no backups.

Here’s hoping Mr. Trump reassesses his “global warming is a hoax” statement. After all, he has a big audience.

Source: Counter Punch

Noam Chomsky: Climate Change & Nuclear Proliferation Pose the Worst Threat Ever Faced by Humanity

noam chomsky

By Amy Goodman, Democracy Now! – 16 May 16
Source: Reader Supported News

Video Democracy Now!


President Obama has just passed a little-noticed milestone, according to The New York Times: Obama has now been at war longer than any president in U.S. history—longer than George W. Bush, Franklin D. Roosevelt and Abraham Lincoln. Obama has taken military action in at least seven countries: Iraq, Afghanistan, Libya, Syria, Pakistan, Yemen and Somalia. Just last month, President Obama announced the deployment of 250 more Special Operations troops to Syria in a move that nearly doubles the official U.S. presence in the country.
As war spreads across the globe, a record 60 million people were driven from their homes last year. Experts warn the refugee crisis may also worsen due to the impacts of global warming. Over the weekend, NASA released data showing 2016 is on pace to be by far the hottest year ever, breaking the 2015 record. Meanwhile, many fear a new nuclear arms race has quietly begun, as the United States, Russia and China race to build arsenals of smaller nuclear weapons.
These multiple crises come as voters in the United States prepare to elect a new president. We speak with one of the world’s preeminent intellectuals, Noam Chomsky, institute professor emeritus at Massachusetts Institute of Technology, where he has taught for more than 50 years. His latest book is titled “Who Rules the World?”


This is a rush transcript. Copy may not be in its final form.

AMY GOODMAN: We’re on the road here in New York, then on today to [Chicago], to Madison, Wisconsin, and then to Toronto, Canada.

The New York Times is reporting President Obama has just passed a little-noticed milestone: He has now been at war longer than any president in U.S. history—longer than George W. Bush, longer than Franklin Delano Roosevelt, longer than Abraham Lincoln. Obama has taken military action in at least seven countries: Iraq, Afghanistan, Libya, Syria, Pakistan, Yemen and Somalia. Just last month, President Obama announced the deployment of 250 more Special Operations troops to Syria in a move that nearly doubles the official U.S. presence in the country.

As war spreads across the globe, a record 60 million people were driven from their homes last year. Experts warn the refugee crisis may also worsen due to the impacts of global warming. Over the weekend, NASA released data showing 2016 is on pace to be by far the hottest year ever, breaking the 2015 record. April became the seventh month in a row to have broken global temperature records. Meanwhile, many fear a new nuclear arms race has quietly begun, as the United States, Russia and China race to build arsenals of smaller nuclear weapons. These multiple crises come as voters in the United States prepare to elect a new president.

To make sense of the challenges facing the globe and the state of the U.S. election, we’re joined today by one of the world’s preeminent intellectuals, Noam Chomsky, institute professor emeritus at Massachusetts Institute of Technology, where he’s taught for more than half a century. His latest book is called Who Rules the World?

Noam Chomsky, welcome back to Democracy Now! It’s great to have you with us.

NOAM CHOMSKY: Glad to be with you again.

AMY GOODMAN: So, Noam, who rules the world?

NOAM CHOMSKY: That’s, to a certain extent, up to us. It is possible for populations to rule the world, but they have to struggle to achieve that. And if they don’t, the world will be ruled by concentrations of power—economic power, state power—closely linked with consequences that are of the kind that you describe. But that’s a choice.

AMY GOODMAN: How does the United States set the terms of the global discourse and, overall, what’s happening in the world?

NOAM CHOMSKY: Well, that’s basically an outcome of the Second World War. At the end of the Second World War, the United States had a level of power and comparative wealth that had never existed in history. It had literally half the world’s wealth. It had an incomparable position of security—controlled the hemisphere, controlled both oceans, controlled the opposite sides of both oceans. In military terms, it was overwhelmingly preeminent. Other industrial societies had been devastated or severely weakened. The war had actually greatly benefited the U.S. economy. It ended the Depression. Industrial production virtually quadrupled. There was a debt, which you could easily grow out of it by growth. So the United States was in fact in a position to pretty much set the terms for virtually the entire global system.

It couldn’t stay that way, of course, and it began to erode pretty quickly, though, with all the changes over the past years, the United States still is in a preeminent position with incomparable advantages and maybe now a quarter of the world’s wealth. In military terms, on that dimension, the United States is completely alone. It’s the only country that has hundreds, maybe a thousand, military bases around the world, troops all over the world. U.S. military spending is almost as great as the rest of the world combined, technologically much more advanced. And within that context of the past 70 years or so, the United States has had a—usually, a pretty dominant role in world affairs and setting the framework within which others operate—not without conflict, of course.

AMY GOODMAN: You talk about the two major threats facing the world today: nuclear war and climate change. Talk about each.

NOAM CHOMSKY: Well, I might start by referring to the Doomsday Clock of the Bulletin of Atomic Scientists, a clock that’s—since 1947, shortly after the atomic bombing, they established a Doomsday Clock. Every year, a panel of specialists make an estimate of how close we are to midnight. Midnight means termination for the species. It’s moved up and back over the years. Right now, it—just last year, it was moved two minutes closer to midnight because of the two threats that you mentioned, stayed there this year. That’s three minutes to midnight, close as it’s been since the early 1980s, when there was a major war scare. It was recognized then to be serious. Now that Russian archives have been opened, we see that it was far more serious than was assumed. We were at one point literally minutes away, several points in fact, minutes away from nuclear war. That’s where the Doomsday Clock stands now.

The nuclear threat is the threat of—on the Russian border, which happens to be the invasion route through which Russia was virtually destroyed twice last century by Germany alone—well, Germany as part of a hostile military alliance—on that border, both sides are acting as if a war is thinkable. The U.S. has just sharply increased; it quadrupled military expenses on its side. The Russians are doing something similar. There are constant near collisions, jets coming close to colliding with one another. A Russian jet a couple months ago virtually hit a Danish commercial airliner. U.S. troops are carrying out maneuvers virtually on the Russian border. That threat is escalating and very serious. William Perry, a respected nuclear specialist, a former defense secretary, recently estimated that the threat is higher than it was during the 1980s. There are also confrontations near the Chinese around China, South China Sea and so on. That’s one major threat.

The other is what you just described. The threat of global warming is very serious. Every time one reads a science journal, there’s an even more alarming discovery. Virtually all the ice masses are melting. The Arctic ice mass, which was assumed to be pretty stable, is actually melting very fast, much more than was thought. The glaciers are melting. There’s severe droughts. Right now already, about 300 million people in India are on the edge of starvation from drought, which has been going on for years. The groundwater is depleted as the Himalayan glaciers melt, as they’re doing. It will undermine the water supply for huge areas in South Asia. If people think there’s a migration crisis now, they haven’t seen anything. The sea level is rising. Chances are it could rise three to six feet, maybe more, by the end of the century—some estimate even sooner. It will have a devastating effect, not just on coastal cities, but on coastal plains, like, say, Bangladesh, where hundreds of millions of people will be severely threatened. I mean, this is a—we’re already killing other species at the level of the so-called fifth extinction. Sixty-five million years ago, when an asteroid hit the Earth, devastating consequences ended the age of the dinosaurs, opened the way for small mammals to develop, ultimately evolve, finally evolve into Homo sapiens, which now is acting the same way the asteroid did. That’s the fifth extinction. It’s going to get worse. All of these are—the rate of global warming today is far faster, maybe a hundred or more times as fast as any moderately comparable period that can be estimated in the geological record.

And to make it worse, of these two huge threats, we have an electoral—the quadrennial electoral extravaganza is going on right now, of course. And it’s pretty remarkable to see how the worst threats that the human species has ever faced, the most important decisions it must make—and soon—are virtually absent from the discussions and debates. On the Democratic side, there’s a couple of comments about it here and there, not much. On the Republican side, it’s much worse. Every single candidate either denies global warming altogether or, in one case, Kasich, admits that it’s taking place but says we shouldn’t do anything about it, which is even worse.


NOAM CHOMSKY: That’s 100 percent.

AMY GOODMAN: Noam, we’re going to go to a break. When we come back, we’ll play the last remaining Republican in the race, Donald Trump’s comment on climate change, and also get your take overall on the 2016 presidential election here in the United States. Noam Chomsky, world-renowned political dissident, linguist, author, has a new book out; it’s called Who Rules the World? Stay with us.

The Cult of the Professional Class

We cannot solve our problems with the same thinking we used when we created them.

— Albert Einstein

In a recent interview on about his book Listen Liberal, author Thomas Frank spoke of the professional class that rules the Democratic Party and the orthodoxy instilled in them by their Ivy League institutions. Indeed, every president since 1988 attended an Ivy League university. Not only does this perspective from the professional class cross party lines, their orthodox worldview extends far beyond politics. It is based on an ideology that has served elites well – (semi) free-market capitalism and continuous economic growth. It is an orthodoxy that values corporate interests and personal gain over public good. It permeates all fields of society and American culture.

In their book Manufacturing Consent, Edward Herman and Noam Chomsky laid out the media propaganda model of journalism, in which they describe the small parameters of discourse allowable in mainstream media, due to factors such as advertising, corporate ownership, and the dominant elite mindset. The media propaganda model they describe is akin to the Ivy League orthodoxy of which Frank speaks. Disciplines cater to a small span of acceptable dialogue and thought based upon shared assumptions. Within that realm, diversity exists, but that diversity does not usually breach understood boundaries. Some voices reach the periphery of the border, but retract from crossing the line through caveats. Those who traverse boundaries tend to be marginalized, regardless of the substance, depth, and validity of their arguments and ideas. This orthodoxy is maintained chiefly through tacit self-censorship and is internalized by those who practice it.

The professional, upper-class orthodoxy infiltrates more than just Ivy League institutions because all others revere and aspire to it, and therefore tend to mimic it. My educational background is fairly privileged. My secondary school and undergraduate university were filled with students whose families possessed tremendous wealth, power, and advantage. My perspectives, experiences, and way of life from my modest, middle-class background were quite different from the majority of the rich students around me. People like me are subtly urged to fit in because we see that doing so would better enable us to garner the successes of the elite. But students far more disadvantaged than me have a great deal of trouble assimilating, not because they lack the intellectual ability but because they feel isolated. Thus, most who persist and whose backgrounds are anomalous – like Bill Clinton and Barack Obama – adopt the mindset of the privileged. They deny or ignore their own histories and the voices they used to hear, voices that may call into question the veracity of the elite orthodoxy.

This elite-generated social control maintains the status-quo because the status quo benefits and validates those who created and sit atop it. People rise to prominence when they parrot the orthodoxy rather than critically analyze it. Intellectual regurgitation is prized over independent thought. Voices of the dispossessed, different, and un(formally)educated are neglected regardless of their morality, import, and validity. Real change in politics or society cannot occur under the orthodoxy because if it did, it would threaten the legitimacy of the professional class and all of the systems that helped them achieve their status.

The orthodoxy is why issues such as poverty, hunger, homelessness, and deterioration of public health and the environment continue unabated. They are eminently solvable, but cannot be solved under the implicit and often defective assumptions accepted by the orthodoxy.

We see examples of orthodox rules that benefit the capitalistic elite, versus independent alternatives which are discounted or overlooked, in all aspects of modern life:

In public education:

Most privileged members of society have never set foot in a public school or taught under the mandates therein. They have little appreciation for the teaching profession, which is filled with intelligent, overworked, over-stressed, caring and devoted individuals who are crippled by lack of resources, lack of time, lack of money, and lack of autonomy. The elite create their unsound educational policies without practical knowledge and evidence – policies which (one could only assume at this point) exist to crumble the public education system and pave the way for privatization. Charter schools, common core, endless standardized testing, and erroneous teacher evaluations do not support the needs of students. The acolytes of the professional class have no clue about what is best for students, particularly students with socioeconomic hardships they cannot and do not fathom. Social support systems for students outside of the classroom, equivalent funding for all students in all public schools, teacher independence, administrative support for teachers, higher teacher pay, and smaller class sizes would do well to tackle some of the fundamental problems in public education, but these out-of-the-box solutions undermine elite authority and corporate prospects. In a similar vein, technological devices – computers, tablets, etc. – have been pushed relentlessly into classrooms, even though their enhancement of learning, according to studies, is questionable or nonexistent.

In economics:

Even Alan Greenspan admits that neoclassical economics has flaws in theory and practice, yet it continues to be the dominant model at universities and in society. The faulty belief in the uber-rational, self-interested homo economicus probably persists mainly because it is a projection of the people who inhabit the privileged class. Corporate externalization of costs are absorbed by society and forgotten when heralding the successes of industrialists and capitalists. Resource extraction and environmental degradation, which are part and parcel of production, consumption, and consequently, economic growth, are downplayed or ignored. Talk of a basic income, a maximum income or maximum wage, and wealth distribution (except flowing to the top) are left out of practical discourse. This, despite that way back in the oft-mentioned halcyon days of the 1950’s under Eisenhower, the top marginal income tax rate was over 90% and the rich did not seem to suffer a bit from it. That tax rate, effectively a maximum income, could support needed social programs and infrastructure and redistribute wealth to those who have spend the past three decades (at least) earning far less than their rightfully owed compensation given their abundant productivity. But such ideas are considered ludicrous according to the orthodoxy.

In health care and medicine:

The orthodoxy of medicine is to emphasize treatment over prevention. Though increasingly stressed during the past several decades, preventative techniques focus on personal lifestyle factors and rarely account for systemic issues. American medicine tends to deal in proximal causes of diseases, such as changes in physiology, versus distal causes, such as extrinsic factors responsible for the changes in the physiology. For instance, you go to the doctor for newly acquired migraine headaches and receive medicine to lessen the pain. Medicine is a helpful immediate remedy, but you may never get to the real cause, which is the fact that you have new carpeting in your home that is outgassing toxic substances resulting in your having headaches. Industrial causes of disease like pollution and toxic exposure are not commonly accounted for under the dominant orthodoxy. In psychology, social factors are discounted, so depression and anxiety are treated as individual mental health issues rather than stemming from an unjust and untenable society. If you are not on prescription medications for something, you are quite atypical, because health care is a business and always needs new markets under the orthodoxy. In medicine, there is also the disregard for unnecessary and questionable interventions. For example, use of CT scans proliferated before enough adequate research as to their safety and efficacy. Consequently, studies have found that excessive use of CT scans may now result in preventable cancers in at least 1 out of 2000 people undergoing CT. But rather than further understanding the body’s innate ability to heal itself in many situations and rather than utilizing the comprehensive knowledge of well-learned critical diagnosticians, medicine now over-uses technological and pharmaceutical diagnostic and treatment methods. Though these sometimes harm patients more than they help, they serve to enhance capitalism and expand economic markets.

In fiction:

Writers such as George Orwell, John Steinbeck, Sinclair Lewis and Upton Sinclair, who shed light on the ills of society and the reality of the human condition, would probably not be published today. While dystopian fiction – especially science fiction and fantasy – is quite popular, look more closely and you will find that these novels, while characterizing some of the unpleasant realities of modern society, almost always end on a bright note with hope for the future. The benefits of technology are triumphed and the negative consequences minimized. Positivity is mandated. Narratives are about escape and denial. Protagonists are heroes who almost always save the day. I recently finished the popular Ready Player One, and while it demonstrates some societal issues, each time the protagonist faces an immediate, dire situation, he manages to overcome the obstacle, often because of simple coincidence or blind providence. The tragic heroes in Shakespeare and other classic works, who are doomed to die in the end but are always better for the knowledge and experience gained, are no more. What message is sent when heroes magically overcome obstacles instead of learning lessons about themselves and their world? This narrative orthodoxy of novels also pertains to most fictional films and television series. (Though some cable shows like The Wire, Breaking Bad, and Mr. Robot seem to be puzzling exceptions.)

capitalism poverty

In environment:

Market-driven, corporate-friendly, and technological solutions to environmental issues dominate the discourse in environmental programs, in the largest environmental advocacy organizations, and in governmental policies. On the topics of climate change, toxic contamination, and pollution, questioning the necessity or sustainability of ever-increasing production and consumption is forbidden in polite company. In a panel conversation I attended about sustainability in agriculture, the discussion turned to ways of feeding a growing world population. Everyone agreed that the problem is not caused by a scarcity of food but by unequal distribution, but no one on the panel seemed to think that fact merited practical consideration. Furthermore, since at least 1/3 of food produced in the world is wasted, addressing the waste stream might mark a point at which to intervene in the problem, but the idea was scoffed at. Pragmatic discussion and research on the issue of food usually assumes the current industrial farming model. Ideas about small, independent, localized, organic systems of food growth and distribution, though favored more and more by consumers and shown in studies to be the sole sustainable method for the future, are not recognized as policy solutions by the orthodoxy. Home gardens, as anyone who tends one knows, could sustain many families fairly easily, but those require land and land is not given away for free under capitalist orthodoxy. Also, they require time, which overworked and underpaid citizens (who are even able to find work) are not allowed to have. So a system of universal gardening is not even considered. As far as toxic substances, one cannot suggest banning an unnecessary and potentially hazardous product or technology. The controversial endocrine disrupting chemical bisphenol-A (BPA) probably does not need to exist at all, as its applications are mostly superfluous to our lives, but not only are policymakers reluctant to regulate it, if they do, they will only apply the mandate of “safe levels” of exposure, even if there is no way to truly determine or evaluate a safe level for human health or the environment. Though there is no credible evidence to support the notion that limiting exposures to hazardous substances, that techno-fixes, or that “win-win” market driven solutions to environmental problems can be at all sustainable in the long-term, these are the only acceptable answers to pollution, climate change, and environmental degradation available within the orthodoxy.

Much is taken as a given under the orthodoxy; instead we might consider:

Why can’t all trade be fair trade?

Why can’t all crops be organic? Two corollaries: why do we call pesticide-laden crops “conventional” rather than “poisoned”? Why not call “organic” food just “food,” as it was prior to the petro-chemical revolution?

Why is single-payer universal healthcare, the model in most countries throughout the world, not discussed in U.S. congressional hearings on healthcare reform?

Why do we automatically denigrate poverty? Why do we not heed stories from the poor themselves?

Why is democracy celebrated as a political structure while only hierarchy is allowed in the workplace?

Why can we not question the ethical implications of wealth and excess with regard to economic inequality or environmental sustainability? Why does our dominant Judeo-Christian society value wealth and excess despite scripture clearly stating its immorality?

Why can we not factually declare the immorality of Wall Street and the general obscenity of commodifying basic necessities of life, such as food, water, and homes (real estate)?

Why is the work ethic venerated, even when that hard work may be only self-serving, or worse, may be generating tremendous harm? What’s the use of being constantly “busy” if your busyness is not useful (and may be destructive)?

Why do we not consider the direct and indirect ways our occupations – and the organizations from which we earn money and power – exploit other species, other humans, and the environment as a whole? What might happen if we were all to do so?

Why do we equate wealth – rather than empathy or altruism – with intelligence and success?

Why can we not fundamentally question capitalism?

The Ivy League-derived orthodoxy of the professional, educated class saturates all areas of American society. Alternative voices and viewpoints are ostracized through a number of means. If you do not possess the expertise and stamp of approval as authorized by the academic infrastructure, your ideas are often dismissed out of hand, however profound and substantive. If you posses the authorization to speak, but step outside of the boundaries of permissible thought (and action), your voice will remain virtually meaningless, or worse, maligned. While scholarship, research, writing, and practices outside of orthodox parameters exist at universities and in other professions, the work of these professionals does not generally penetrate the paradigms of larger society, nor does it affect large-scale public policies. Some academics suffer job loss for their unorthodox views. Steven Salita, Norman Finkelstein, and Ward Churchill are emblematic of the consequences to those who exceed the limits. Whistleblowers like Chelsea Manning, Edward Snowden, John Kirakou, and Thomas Drake who began within the parameters, for moral and ethical reasons violated the border of orthodoxy and paid a price. Environmental, social justice, peace and animal rights advocates like Tim DeChristopher and Jessica Reznicek also know the penalties for defying the orthodoxy.

Our biosphere is in a global death spiral. The sources of life support, for those who can still afford them, are diminishing in quality and quantity. None of the orthodoxy coming from the Ivies and the professional class is effecting change in this trajectory. We need other voices – voices of the disposed, disenfranchised, maligned, harmed, victimized, and powerless – to help find answers. We need to value voices of the indigenous, who have lived as close to sustainably on this planet as we have ever witnessed and whose traditions and knowledge may well be fading into oblivion. We need to respect the voices of those whose knowledge comes from experience, rather than just from books. We need to consider the voices of those whose main purpose is not professional advancement, but public good. We need to consider information from others based on the merits of their arguments and evidence, rather than the letters that follow their names.

Perhaps the worst aspect of the orthodoxy is that we cannot truly speak to that fact that humanity is no longer facing the downfall of a single nation or the destruction of a single empire, but the decimation of an entire planetary ecosystem. If we do not challenge the cabal of political and social power in America and around the world, it will likely be the death knell for us all.

%d bloggers like this: